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With the help of the density operator, the angular differential cross-section for ionization of helium is calculated
within the framework of the one-centre atomic-orbital close-coupling method. We consider a naked C°% ion

as projectile with an energy of 2.5 MeV/a.u. Our result agrees well with the experimental data and the other
theoretical calculations such as the first Born approximation, various Distorted Wave models and the classical

trajectory Monte Carlo simulation.

PACS: 34.50.Fa, 34.10. +x

Ionization of atoms in collisions with fast ions is
a fundamental physical process attracting great ex-
perimental and theoretical interest. Single-ionization
for very fast fully stripped ions colliding with light
atoms is well understood both theoretically ['! and
experimentally.] For moderate projectile velocities
where the processes of excitation, ionization and elec-
tron capture compete and interfere strongly, the per-
turbation models fail or have limited validity.

For slow collisions, where the velocity of the pro-
jectile is equal to or smaller than the velocity of the
target electron, charge transfer becomes relevant and
overwhelms ionization.[® When the impact parame-
ter is of the magnitude of the target atomic radius,
molecular orbitals can be formed. To describe charge
transfer mechanisms for slow collisions, one needs two-
centre calculations.

Electron—electron correlation may play an impor-
tant role at low impact energies. The essential role of
the wavefunction in describing the ejection of electron
has been shown in Ref.[4]. It is necessary therefore
to exceed the limitations of the independent-electron
model and consider electron—electron correlation.

The experimental setup for measurements has re-
cently gained such high quality and accuracy that the
individual momenta of the two participating electrons
and of the recoil ion have become measurable,l®! chal-
lenging all the models to go beyond total cross-sections
and calculate more sensitive observables. On the level
of total-cross-sections the models are much too com-
plicated to test and to compare with the others due
to the lack of further information. Angular differen-
tial cross-sections as measurable quantities makes it
possible to analyse the differences and the similarities
of different models.

In this work we study the angular distribution

of electrons ejected from helium atom under the im-
pact of C5T ion and compare it with the experimental
data 1 and various theories. To our knowledge, there
has been no angular differential cross-section calcula-
tion for atoms in heavy ion projectile impacts using
the one-centre atomic-orbital close-coupling (AOCC)
method until now. A review article about the semi-
classical close-coupling description of atomic collisions
can be found in Ref. [7]. In the recent work of Ref. [8],
the two- and one-centre AOCC method was employed
to calculate the ionization cross-sections.

In this Letter, we extend our one-centre AOCC
method to calculate the angular differential cross-
section for ionization. Details of our original method
can be found in Refs. [9] or [10]. As basis set we use
configuration interaction (CI) wavefunctions built up
from Slater-like orbitals to describe bound states of
helium and regular Coulomb wavepackets to have a
finite approximation about the single and double elec-
tron continuum. Our method was successfully used
to calculate single- and double-ionization total cross-
sections of helium in heavy ion collisions,[*!% and
later for photoionization of helium with short intensive

XUV laser pulses.!!!!

The motion of the projectile is described by a
straight-line trajectory with constant speed. For
projectile—electron interaction the non-relativistic
time-dependent Coulomb potential is used. With the
help of the density operator we calculate the angular
differential ionization probabilities and a final integra-
tion over the impact parameter gives us the angular
differential cross-sections which is the new aspect in
this work. Atomic units are used throughout the pa-
per unless otherwise mentioned.

For the ionization process we solve the time-
dependent Schrédinger equation with time-dependent

* Supported by the Hungarian Scientific Research Funds: OTKA Nos T046095 and T046454, and the ‘Bolyai’ from the Hungarian

Academy of Sciences.
** Email: barna@mpipks-dresden.mpg.de
(©2004 Chinese Physical Society and IOP Publishing Ltd



No.7

A. C. Gagyi-Palffy et al.

1259

external Coulomb field

.0 - -
i U(ry,re,t) = (Huae + V(¢)) ¥(r1,r2,t), (1)

where H He is the Hamiltonian of the unperturbed he-
lium atom

. 2 2 2 2 1
HHe:% P2

and V(t) is the projectile—electron interaction

#am ww) O

with R;(t) = ((z; — b)2 +y2 + (z; —vpt)?)V/2, i = 1,2.
To solve (1) we expand ¥(ry,7r2) in the basis of eigen-
functions {@;} of the time-independent Schrddinger
equation

V(t) =

HHe‘I’j(Tl,Tz) = E;®;(r1,72) (4)

to yield

U(ry,mo,t) = a;(t)@i(re,ma)e” 5, (5)

Jj=1

where a;(t) are the time-dependent expansion coeffi-
cients for the various channels described by the wave-
functions @;. Inserting this ansatz into (1) leads to
a system of first-order differential equations for the
expansion coefficients

day, (t)
dt

V),

(6)
where V4 is the coupling matrix (& (r1,75)|V|;(ry,
r2)) including the symmetrized products of the
projectile—electron single-particle interaction matrix
elements with V(t) and electron—electron single-
particle overlap matrix elements, respectively.

Denoting the ground state by k£ = 1, we use the
following initial conditions for solving (6):

N
=iy Ve B Bla(t), (k=1,...
j=1

1 k=1

ap(t - —o0) = { 0 kA1, (7)

The total cross-section for occupying the helium eigen-
state k can be calculated as

o = 271'/ bPy(b,t — 00)db (8)
0
with the probability
Py(b,t — o0) = |ax(t — 00)|?. (9)

The coupled system of (6) has to be solved numer-
ically.

The eigenfunctions @; in (4) are obtained by di-
agonalizing the Hamiltonian in a basis of orthogonal
symmetrized two-particle functions f,, so that

Di(r1,m2) =Y Pl fu(r1,ma). (10)

n

For the single-particle wavefunctions we use an an-
gular momentum representation with spherical har-
monics Y} ,,, hydrogen-like radial Slater functions and
radial regular Coulomb wavepackets. The Slater func-
tion reads as

S lmos(P) = c(n,n)r"flemel,m(O,go), (11)

where ¢(n, k) is the normalization constant. A regular
Coulomb wavepacket

Ck,l,m,Z(”') :q(k7 Ak)m,m(ea ()0)

Ek-l-AEk/Q
- / Fk,l,Z(T) dk
EkaEk/Q (12)

with normalization constant g(k,Ak) is constructed
from the radial Coulomb function

2k ™ (2p)! . ,
F, =/—e?2 ———e Il +1-
k12 (r) =\ —e TN IT(l+ 1 —in)|
Fy(1+ 1+ in, 2L + 2, 2ip), (13)
where n = Z/k, p = kr.

The wavepackets cover a small energy interval
AFE) and thereby form a discrete representation of
the continuum which can be incorporated into our fi-
nite basis set. The normalized Coulomb wavepackets
are calculated up to 315 a.u. radial distance or more
to achieve a deviation of less then one percent from
unity in their norm.

In our approach two different effective charges Z
have been used to take into account the difference
between the singly- and the doubly-ionized electrons.
For singly-ionized states we have used Z = 1.0, and
Z = 2.0 for the doubly ionized case. A slight de-
viation from the effective charge gives practically no
change in the final spectrum. We cover the single- and
double-continuum up to 6 a.u. energy equidistantly.

Out of the single particle states (11, 12) we
have used 17 s-functions (9 Slater functions (sf), 4
wavepackets (wp) with Z = 1.0 and 4wp with Z =
2.0), 18 p-functions (6sf, 6 wp with Z = 1.0 and 6 wp
with Z = 2.0) and 12 d-functions (4sf, 4wp with
Z = 1.0 and 4wp Z = 2.0) to construct the sym-
metrized basis functions flfM(rl,rz). For the L = 0
configurations we have used ss wavefunctions to ob-
tain a ground state energy of —2.88a.u. For the
L = 1,2 states we have used sp or sd configurations.
The effects of the CI wavefunction can be clearly seen
at the values of the bound states. Enhancing the
number of the wavefunctions all the bound energy
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levels become lower converging to the measured en-
ergy values. For L = 0 configurations one can use
ss + pp + dd angular correlated wavefunctions ' to
obtain a better ground state energy of —2.901 a.u.,
which is reasonably accurate compared to the ‘exact’
value of —2.903 a.u.

To test the convergence of our basis we have used
520 basis states first, up to 27 a.u. energy. Our results
clearly demonstrate that the channels above 4 a.u con-
tribute very little to the ionization probabilities. The
results we present have been calculated with the help
of 300 quantum states.

Between the first ionization threshold (—2.0a.u.)
and the lowest auto-ionizing bound state (—0.6931 a.u.
for L = 1) our basis contains 22 states providing the
major contribution for single ionization.

In order to classify the states such as bound, single-
ionized or double-ionized states we use a Feshbach pro-
jection method described in Refs. [9, 10].

It is well known that with the help of the density
operator radial electron density can be calculated in
a stationary atom.!'! We use the same idea here, and
calculate the azimuthal electron density of the ionized
atom with the time-dependent wavefunction (5) after
the collision (¢ — o0). The density operator of the
helium atom reads as

pr)=6(r —ry)+d(r —ry). (14)

Using the mean value of the density operator one can
calculate the spatial probability distribution for the
emitted electron

p(’l") = <W(r1,r2,t)\p('r)| W(r177‘27t)>
=2/W@mman, (15)

where the factor two comes from the symmetry con-
siderations.

Integrating now over the impact parameter and
the remaining azimuthal angle we obtain the angular
differential cross-section for single-ionized electrons

:%/m/%W@w%MMM

’I"1,’I"2,

27
/ / / | ¥ (ry,7,t)| 2B3riridrde
N

=— E a; eZEftg ag(t

=1

/ /%/ Hry,7) Pp(ry, r)r de(Pd‘ZT‘h)

where fPJT(rl,'r) and Py(ry,r) are the configuration
interaction wavefunctions (10). The angular depen-
dence of P(6) is given by the products of spherical

Vr2drdye

71Ekt

harmonics Y}, (6, ) integrated over ¢ yielding prod-
ucts of associated Legendre polynomials with different
angular momentum. A more detailed description of
the method can be found in Ref. [13].

For single- and double-ionization many different
mechanisms are possible. In slow ion—atom collisions
the particles have sufficient time to form a quasi-
molecule for a short time. The electrons are in the re-
gion between the projectile and target nucleus. When
the projectile captures the target electron then it is
called the saddle point ionization. At moderate en-
ergies the target electron is simply ‘kicked out’ by
the projectile.
mechanisms can occur.

For double-ionization many different
At low impact energies with
large perturbation, the ionization is purely sequential,
and the electrons are emitted independently one af-
ter another. The projectile has enough time to inter-
act with both electrons, this is called the two-step 2
mechanism. In the range of small perturbation when
the projectile is quick, two independent projectile—
electron interactions become improbable because of
the short reaction time.
the double-ionization by the shake-off mechanism. Af-
ter a single-ionization event the remaining electron can

Therefore one can describe

also be emitted due to the rearrangement of the wave-
function to the new situation of an unscreened target
nucleus. In our calculation these two mechanisms in-
teract and cannot be separated.

We have calculated the total cross-sections and
compared them with the experimental data.l’! For
the single-ionization cross-section we obtain 28.8 X
10717 ¢cm?; the experimental value is 31.7 x 1077 cm?
which implies a ten-percent discrepancy between the-
ory and experiment. In the case of double-ionization,
five percent of the single-ionization total cross-section
is considered experimentally, which is 1.5 x 10717 cm?.
Our calculation gives 1.22 x 10717 cm?
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Fig. 1. Impact-parameter dependence of a single-ionized
channel.
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Figure 1 shows the impact-parameter dependence
of a typical single-ionized channel with total angular
momentum L = 1 and energy of 2.1a.u. To achieve
convergence 14 different impact parameters are calcu-
lated up to 50 a.u.

Figure 2 displays our angular differential cross-
section results together with the experimental data ¢!

60 T T
=—=a Experiment
CT™MC
———— Closc-coupl
~ | lEdp 1.Born
R s P02 N U CDW
~ 40t CDW-EIS
g
3]
x I
[ N
o \\
S 20
TOAE e NN T
[}
3
-9 31 71 111 151

Scattering angle(deg)

Fig. 2. Angular differential cross-section for ejected elec-
trons emitted in 2.5MeV/amu C®t helium collisions.
Solid squares: experiment.[s] Open connected circles:
CTMC.116] Thick dashed line: Our one-centre AOCC cal-
culation. Dotted line: first Born approximation. Thin
dashed line: CDW.['¥ Thin dot-dashed line: CDW-
EIS.[15],

and various other theories such as the continuum
distorted wave (CDW),'* continuum distorted wave
Eikonal initial state (CDW-EIS),[*%] first Born approx-

imation and classical trajectory Monte Carlo (CTMC)
method.[*®! Our calculation is in good agreement with
the experiment. At a scattering angle of about 70°,
all the quantum mechanical calculations have a max-
The CDW and CDW-EIS models explain
this phenomenon with the binary encounter approach
(BEA). Unfortunately, we have not been able to calcu-
late the energy differential cross-sections as yet. Fur-
ther work is in progress to calculate more sensitive ob-
servables from our ab initio one-centre AOCC method.

The authors thank Professor W. Scheid and Pro-
fessor Emeritus N. Griin for fruitful discussions and
constructive ideas.
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