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Abstract: We investigate a hydrodynamic equation system which—with some approximation—is
capable of describing the tsunami propagation in the open ocean with the time-dependent self-similar
Ansatz. We found analytic solutions of how the wave height and velocity behave in time and space
for constant and linear seabed functions. First, we study waves on open water, where the seabed can
be considered relatively constant, sufficiently far from the shore. We found original shape functions
for the ocean waves. In the second part of the study, we also consider a seabed which is oblique.
Most of the solutions can be expressed with special functions. Finally, we apply the most common
traveling wave Ansatz and present relative simple, although instructive solutions as well.
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1. Introduction

Wave propagation in nonlinear media is a fascinating field in physics with enormous
literature, (without completeness, we just mention some relevant monographs) [1–7].
Narrowing the scientific question to the dynamics of various waves in sea or fresh water
is still an immerse problem with considerable literature [8–17]. The very first pioneering
work was written by Airy in 1841 with the title of “Tides and Waves” [18]. Interaction of
water waves with ships [19] is also a crucial question both from theoretical and engineering
sides as well.

Regarding water waves, one may find important numerical and analytical studies of
Bussinesq approximation [20–29]. There is also a Boussinesq approximation with dissipa-
tive dynamics and possible density variations [30–35]. Experiments for certain parameter
values are also realized [36,37]. Connections related to radiation and environment can be
found in [38]. One may find a detailed review of ocean wave modelling in [39].

Tragedies caused by tsunamis in the last several decades highlighted that investigation
of the physics of water waves are indispensable, and the obtained results can save human
lives. One may fine studies on destructive weather phenomena one in [40].

To study such effects, diverse nonlinear partial differential equations (PDEs) have to
be investigated with various methods. Tsunamis are long life non-dispersive waves which
can be well described with solitons and with the corresponding mathematics. One may
also find wave equations with fractional derivatives in [41,42].
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In the following, we choose a completely different path, and we investigate the
long-time dispersion and decay of such kind of fluid equations with the self-similar
Ansatz [43,44]. This Ansatz inherently contains two exponents—for each dynamical
variable—which describes the asymptotic decay and dispersion of the solutions. This
Ansatz is the natural trial function of the regular diffusion (or heat conduction) equation
and gives the Gaussian (or fundamental) solution after some easy mathematical steps. If the
parameter dependences of these solutions are systematically studied and analyzed, then a
well-established physical image emerges in front of us. Of course, additional mathematical
methods (like using generalized symmetries) also exist to obtain other solutions like those
in [45].

This study is organically linked to our personal long-term strategy in which we
systematically investigate the fundamental hydrodynamic systems one after another and
analyze with the physically relevant self-similar Ansatz. Up to now, we have published
more than ten papers—(some of them are [46–49])—and a book chapter [50] in this field. In
our last two publications, we investigate the question of finding analytic solutions for the
rotating and stratified Euler equations [51], and the analysis of a two-fluid model where
the Euler and the Navier–Stokes equations were coupled [52].

With the use of self-similar transformation, we arrive for the first time to solutions of
the tsunami wave equations, presented in [9]. A further new feature of the present study is
that we apply different analytic sea-bed functions and present analytic solutions for each
of them. We successfully applied this investigation method for the KPZ surface growth
model [53,54] where half a dozen different kinds of noise terms were considered and
analyzed with the self-similar and traveling wave Ansätze. To the best of our knowledge,
there are no such time-dependent self-similar solutions known, presented and analyzed in
the scientific literature for this water-wave equation system.

2. Theory and Results

In the following, we apply the equations of motion for ocean waves, based on the
study of [9]. These are considered to be also amenable for tsunami waves, in open ocean,
sufficiently far from the shore. The results may be also true for smaller scales, with the
condition that the depth is smaller than the horizontal dimensions of the water surface,

∂ζ

∂t
+

∂

∂x
(u · l) + ∂

∂y
(v · l) = 0,

∂

∂t
(u · l) + c2 ∂

∂x
ζ = 0,

∂

∂t
(v · l) + c2 ∂

∂y
ζ = 0,

(1a)

(1b)

(1c)

where the dynamical variables are the wave height ζ(x, y, t) and the two orthogonal hor-
izontal fluid velocity components u(x, y, t), v(x, y, t). The function l(x, y) or l(x, y, t) is
the depth of the sea, or the function of the seabed. We will investigate both cases, time-
independent and time-dependent seabed functions, and the differences will be highlighted.
The mathematical form of the self-similar Ansatz inherently makes this comparison pos-
sible. We consider that water is inviscid, incompressible and irrotational. The variable
local wave propagation speed is c =

√
G · l(x, y, t) with the G ≈ 10 m

s2 gravity acceleration.
Figure 1 shows the geometry of the investigated flow problem. The wave height of a surface
wave ζ(x, y, t) is the difference between the elevations of a crest and a neighboring trough.
The original depth of the water is the distance between the minima of the wave height
function ζ(x, y, t) and the maxima of the negative seabed function l(x, y) (or l(x, y, t)), and
can be shifted with any arbitrary constant.
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Figure 1. The geometry of the flow where ζ(x, y, t) is the wave height and l(x, y, t) is the seabed
function, respectively.

At this point, we have to mention that a large number of such equations are derived
and part of them solved in the work of [16]. Unfortunately, the solution functions are not
analyzed, not visualized on figures, and no detailed parameter studies were presented,
which would be desirable for physicists or engineers. Water waves on variable depth
are also an exhaustively investigated topic in the last few decades [55]. The linear water
wave scattering by variable depth (or with other name bottom topography) in the absence
of a floating plate has been investigated by many authors. Two approaches have been
developed. The first is analytical, and the solution is derived in an almost closed form
[56,57]. The second approach is numerical, and developed by Liu and Liggett [58], in which
the boundary element method in a finite region is coupled to a separation of variables
solution in the semi-infinite outer domains. For both the analytic and numerical approach,
the region of variable depth must be bounded. Wave scattering by a floating elastic plate on
water of variable bottom topography was treated by Wang and Meylan [59] in 2002. Using
a Zakharov integral equation approach, a pair of coupled nonlinear evolution equations are
derived for two co-propagating weakly nonlinear gravity wave packets over finite depth
fluid [60]. Additional interesting and new results about water waves can be found in the
publications of [61–65]. The newest results about disperse shallow water waves can be
found in the monograph of Khakimzyanov et al. [66].

We apply the following well-known self-similar Ansatz [43,44] for the dynamical
variables:

ζ(x, y, t) = t−α f (η), u = t−γg(η), v = t−δh(η), (2)

with the new reduced variable of η = x+y
tβ . All the exponents α, β, γ, δ are real numbers.

(Solutions with integer exponents are called self-similar solutions of the first kind, non-
integer exponents generate self-similar solutions of the second kind.) This Ansatz is one
kind of reduction mechanism where the original PDE system is reduced to an Ordinary
Differential Equation (ODE) system. Unfortunately, both initial and the boundary problems
become undefined. The obtained results can fulfil some kind of well-defined initial and
boundary problems only via fixing their integration constants during the integration of
the obtained ODE system. The shape functions f , g, h should be continuous functions and
will be evaluated later on. (For first order Euler-type PDEs, no continuous higher order
derivatives of the shape functions are needed; therefore, shock waves solutions, solutions
with jumps or with singularity may occur.)
The logic, the physical and geometrical interpretation of the Ansatz were exhaustively
analyzed in all our former publications [46–50]; therefore, we neglect it. Except for some
extreme cases, positive exponents—now α, β, γ and δ—mean physically reasonable and
well-behaving disperse solutions which decay and spread out in time. The exponent β has
direct connections to the spreading velocity of the solution. The α, γ, δ = 0 case occupies
a special place in our analysis and could mean physically relevant solutions without any
temporal decay, and, in this sense, these are similar to solitons. (We cannot describe real
solitons with our Ansatz because that would mean zero dispersion and decay as well.)
The big advantage of the self-similar Ansatz of (2) that it directly gives us the Gaussian (or
fundamental) solutions of the regular diffusion (or heat conduction) equation where the
above-mentioned physical meaning of the exponents are clear to identify. Applying this
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kind of Ansatz to any kind of nonlinear PDE system gives us clear information about the
dispersive properties of the investigated phenomena. Solutions with negative exponents
usually mean divergent solutions which will be mentioned later and might represent
tsunamis or rough waves.

Now, we have to make a case study for different well defined bed functions l̃(x, y)
or l(x, y, t). Such kind of an analysis was performed with the Kardar–Parisi–Zhang (KPZ)
interface growing equation where the effect of the different noise terms was investigated,
and numerous analytic solutions were derived [53]. We used the Maple 12 mathemati-
cal software to evaluate the analytic solutions of Equation (1a)–(1c) for different seabed
functions from now on.

2.1. The Constant Seabed Function

Let us start with the simplest seabed function, namely with the l(x, y, t) = d case,
where d < 0 is a real number. The obtained ODE system reads

−α f − η f ′ + dg′ + dh′ = 0,

(−αg− ηg′)d + 10d f ′ = 0,

(−αh− ηh′)d + 10d f ′ = 0,

(3a)

(3b)

(3c)

where the prime means derivation with respect to the variable η, and the corresponding
self-similar exponents are

α = γ = δ = arbitrary real number, β = 1. (4)

Note that the system is symmetric in the two velocity coordinates. It is important to
say that all three exponents which are responsible for the temporal decay of the dynamical
variables (α, δ and γ) are arbitrary, which gives a relatively large freedom for the solutions.
Usually, positive exponents mean physically reasonable non-explosive solutions for large
times. The common exponent β, which is responsible for the spreading, is positive, which is
a promising sign for possible solutions. Furthermore, because β = 1, a construction η ± C,
where C is a constant, yields x+y±C·t

t , which in itself is a kind of decaying wave in time.
Unluckily, there are no closed form analytic solutions available for all three dynamical

variables of (3a)–(3c) for general α and d parameters. However, for the wave height, the
general solution can be formulated in the next closed form of:

f (η) = c1(η + 2
√

5d)−α + c2(η − 2
√

5d)−α. (5)

Note that, for β = 1, we automatically have the η = x
C·t relation with C = 1 (which is

a real wave speed). After some simple algebraic steps, (5) can be reformulated to

f (η) = c1tα[x + y + 2
√

5d · t]−α + c2tα[x + y− 2
√

5d · t]−α = tαm(x + y∓ Ct), (6)

which are left and right running traveling waves, with shape function of m(), with velocity
of C = 2

√
5d and with power-law time-varying amplitude of tα. Of course, the shape

functions m() are now not the well-known sine or cosine functions but the power-law
of the wave argument. This is an interesting and rare feature of the derived results.
Such phenomena (when the original self-similar Ansatz leads to traveling-wave solutions
with time-varying amplitude) has already occurred in our former studies. More than a
decade ago, we investigated a heat conduction model based on the Euler–Poisson–Darboux
equation which is a “kind of time-dependent telegraph-type equation” with the usual
self-similar Ansatz, and we found a solution which is a product of two (left-running and
right-running) traveling waves with additional temporal decay [67]. As further explanation,
we may say that the original PDE system (1) is “so hyperbolic” (by that, we mean a first-
order system without any kind of additional dispersion) that even the self-similar Ansatz
(which is very successful to obtain disperse and decaying solutions of parabolic systems—
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school example Gaussian solution of the diffusion equation) provides traveling wave
solutions. Another interpretation could be the following time-decaying traveling wave
solutions of hyperbolic systems can be found with the self-similar Ansatz due to its internal
structure. In other words, this effect is a clear fingerprint of the in-depth entanglement of
diffusion and wave phenomena.

Figure 2a presents the shape function of the wave height function for different α
exponents. Note that, for α > 0, the derived solutions have either a local minimum or
maximum or both and an asymptotic decay to zero at large arguments. For α < 0, the
solution is divergent at large arguments. Figure 2b shows the final wave height function
ζ(x, y = 0, t) for α = 1/2, which has a very sharp peak at the origin at small times and
distances and a steep decay. All other positive αs show similar behaviour as well. The
α = 0 case means no wave at all, just a constant function everywhere.

(a) (b)

Figure 2. The shape function and the solution of the wave height. (a) The shape functions of the wave
height (5) are presented for various self-similar exponents. The yellow, pink, black, blue, red, green
and brown curves are for α = −1/2, 0, 1/3, 1/2, 2/3, 1 and 2, respectively. The integration constants
c1, c2 were set to unity, and water depth d = −1. (b) the solution of the wave height function of
ζ(x, y = 0, t) = t−α f (x/t) for the parameter set of α = 1/2, c1 = 1, c2 = 1, the water depth is d = −1.

For a better understanding, we give the explicit forms of the function f in case d = −1,
c1 = c2 = κ and some values of α.

If α = 1/2, and κ = 1, we have for the function f :

f (η) =
1

(η + 2
√

5i)
1
2
+

1

(η − 2
√

5i)
1
2

. (7)

In this case, if one assumes that

(η + 2
√

5i)
1
2 = ∓(p + qi), (8)

then
(η − 2

√
5i)

1
2 = ∓(p− qi), (9)

in the above evaluation. Considering

η + 2
√

5i = p2 − q2 + 2pqi, (10)

then we have

p2 =
η +

√
η2 + 20
2

, q =

√
5

p
. (11)
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Consequently, the formula for α = 1/2:

f (η) =
1

p + q · i +
1

p− q · i =
2p

p2 + q2 . (12)

If we insert value for p, one obtains

f (η) =
2

√
η+
√

η2+20
2

η+
√

η2+20
2 + 5

η+
√

η2+20
2

. (13)

If α = 1 is inserted, one obtains

f (η) = κ
2η

η2 + 20
, (14)

in case α = 2

f (η) = κ
2(η2 − 20)

(η2 − 20)2 + 80
. (15)

Note that our PDE or even the obtained ODE system is symmetric in the two velocity
coordinates, so it is enough to evaluate and analyze one of them. For the velocity variables,
the general solutions can be formulated but contain an integral which can be evaluated in
closed forms for given integer α values only. For α > 0, the solutions are proper rational
fractions, having singularity in the origin and zero asymptotic values in infinity; for α ≤ 0,
the results are polynomials. We give two examples:

α = 1, g =
10c2η + 10c3 + c1η2 + 20c1

(η2 + 20)η
,

α = −2, g =
( c2

2
− c1

)
η2 − 20c3η − 5c2.

(16a)

(16b)

In Figure 3a, we present the velocity shape function g(η) for four different α exponents.
The projection of the velocity function u(x, y = 0, t) = t−γg(η) for γ = 2 is visualized in
Figure 3b. Note the power law decay for large distances. The wave velocity as a relevant
dynamical variable of the system shows no extra features.

(a) (b)

Figure 3. The shape function and the solution for the x component of the velocity. (a) The shape
function of the x velocity component g(η) for four different α exponents for the constant seabed
function. The black, blue, red and green line correspond to 1, 2, 3 and −2 values, respectively. The
integral constants c1 = c2 = c3 = 1 and d = −1. (b) The velocity projection u(x, y = 0, t) = t−γg(η);
for γ = 2, other integration constants and the water depth remain the same.
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2.2. The Linear Seabed Function

The next choice is the linear case. We have to distinguish two different cases and have
to make a clear separation:

l̃(x, y) = −(ax + by + c),

l(x, y, t) = −(ax + by + c)/tβ = −η,

(17a)

(17b)

where the negative sign was taken from geometrical reasons, and we would like to have
the seabed in the negative region, a, b and c are just free positive real numbers which are
responsible for the slope of the seabed and the depth in the origin. The first case means
a rigid sea-bed which does not change its shape during the wave motion. Probably this
model is more relevant for deeper water where the sea bottom is rigid. In our forthcoming
analysis, we have to introduce the following identity:

l̃(x, y) = −(ax + by + c) = − ax + by + c
tβ

· tβ = −η · tβ. (18)

The second case (17b) represents a physical situation where the sea-bed function is
continuously modified during the corresponding wave propagation, which is feasible in
very shallow water and loose ground soil like slime. Note that the tβ factor should play a
relevant role in the time asymptotic.

Let us analyze the time-independent case first. After some simple algebraic manipula-
tions, we can derive the ODE system of:

−α f ′ − 2η f ′ − g′η − ga− h′η − hb = 0,

([−α− 1]g− 2ηg′)η − 10η f ′ = 0,

([−α− 1]h− 2ηh′)η − 10η f ′ = 0,

(19a)

(19b)

(19c)

with exponents of

α + 1 = δ = γ = arbitrary real number, β = 2. (20)

Note the slight difference compared to the constant seabed function. The β = 2
exponent, which is responsible for the “spreading”, is favourably high; in regular diffusion
processes, it is usually just 1/2. There are no general formulas available for all three
dynamical variables for arbitrary parameters a, b and for the α exponent. The exception is
the shape function of the wave height, which is the following:

f = c1 · 2F1

(
α
2 , α+1

2 ; a+b
2 ; η

5

)
+

c2 · η1−[ a+b
2 ] · 2F1

(
α−b−a

2 + 1, 3−b−a+α
2 ; 2− a+b

2 ; η
5

)
, (21)

where 2F1[·, ·; ·; ·] are the hypergeometric functions [68]. The hypergeometrical function is
defined for |z| < 1 by the power series of

2F1(a, b; e; z) =
∞

∑
n=1

(n)n(b)n

(e)n

zn

n!
= 1 +

ab
e

z
1!

+
a(a + 1)b(b + 1)

e(e + 1)
z2

2!
+ ..., (22)

where (q)n in the (rising) Pochhammer symbol, which is defined by:

(q)n =

{
1, if n = 0,
q(q + 1) · · · (q + n− 1), if n > 0.

(23)

It is clear to see from the infinite power series definition of the hypergeometric function
using the Pochhammer symbols that the function is undefined (or infinite) if the third
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parameter equals a non-positive integer. On the other side, the infinite series terminates if
the first two parameters of the hypergeometric functions are non-positive integers.

It is a hopeless undertaking to give a general parameter study of the solution for
arbitrary α, a and b. It is logically clear that larger parameters a, b cause a steeper slope,
which affects the numerical values of the exponent. Thus, let us fix a = b = 1 and
investigate the role of the self-similar exponent α; now, the former formula (21) is changed
to

f = (η − 5)−
1+2α

4 ·
(

c1 · 2F1

[
α
2 , α+1

2 ; 2α+1
2 ; 5−η

5

]
·
[

5−η
5

] 1+2α
4

+c2 · 2F1

[
2−α

2 , 1−α
2 ; 3−2α

2 ; 5−η
5

]
·
[

5−η
5

] 3−2α
4
)

. (24)

Figure 4a presents (24) for various αs. It is clearly visible that, for α < 0, all shape
functions diverge at large argument η. For positive αs, the shape functions go to zero at
infinity. Note the lower limit of the domain of all shape functions which lies uniformly at
η = 5, which is half of the gravitational acceleration parameter of the system. We obtain the
usual features that negative exponents mean non-decaying solutions at large arguments.

On the right side of Figure 4, the y = 0 projection of the wave height ζ(x, y = 0, t)
is presented for α = 0, which means that the global maximum is not changing in time.
The most important property of the solution is its shape, which describes a continuously
widening ridge with a compact support in space. The function together with the first spatial
and temporal derivatives remain finite at the border of the domain. The value and the
spatial position of the maximum is not changing in time; therefore, it cannot be interpreted
as any kind of traveling wave.

(a) (b)

Figure 4. The shape function and the solution for the spatial and temporal dependence of the wave
height. (a) The shape function of the wave height f (η) for seven different α exponents for the
linear seabed function. The black, blue, red, green, yellow, gray and light blue lines correspond to
−1,−1/2, 0, 1/2, 3/2 and 2 values, respectively. The integral constants c1 = c2 = c3 = 1 and d = −1;
(b) the wave height projection ζ(x, y = 0, t) = t−α f (η) for γ = 2 other integration constants, and the
water depth remains the same.

There is no general formula available for arbitrary α for the velocity shape function;
however, for fixed and well-defined αs, closed formulas can be evaluated. We present some
shape functions for a = b = 1
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α = −1, g = c2 +
5c3√
η − 5

− c3
√

5 arctan

(√
5η − 25

5

)
− 25c3√

η − 5η
− c1,

α = 0, g = −
5c3η3/2 − 25c3

√
η + c1η

√
5η − 25√

5η − 25ηη3/2
,

α = 1, g =
−5c3

η
√

η − 5
+

c2

5
.

(25a)

(25b)

(25c)

For other e.g., non-integer αs, we obtain expressions which contain an additional
integration with some extra constants. These integrals can be evaluated only when all
constants are fixed. In Figure 5a, we can see the three analytic velocity shape functions of
(25). Note that all three functions are defined for η > 5 only. To have a complete picture,
Figure 5b shows the velocity distribution u(x, y,= 0, t) for the α = 0 exponent, which
means that the global maximum has temporal decay again. The general feature of the wave
velocity function is very similar to the former wave height function. It is a continuously
widening ridge with a compact support in space again. The function together with the
corresponding first spatial and temporal derivatives has finite values the the border of the
domain. However, the spatial position moves in time, which means that it is a traveling
wave solution. To have a very picturesque presentation of how the water wave behaves,
we present a plot which shows the “kinetic-energy like” property of the wave, namely the

Ekin ∝
ζ(x, y = 0, t) · u(x, y = 0, t)2

2
. (26)

Our argumentation is the following: we do not have the density as a dynamical
variable of the model, but we think that the true height of the waver wave is proportional to
the mass of the wave; therefore, the presented quantity gives us a physically acceptable hint
of the wave. As we can see, the domain of the height and the velocity functions are slightly
different, and a physical true wave is only present when the mass (or now the wave height)
and the velocity are different from zero. Figure 6 presents the distribution of Equation (26).
Note that the shape of the wave describes a true finite traveling wave in space and time
with constant amplitude. Due to the β = 2 self-similar exponent (which is responsible for
the dispersion ratio of the dynamical variables), the obtained wave has strong spreading;
therefore, despite the constant maximum, our wave is not a solitary wave. The rising edge
of the wave has a finite non-zero time derivative at the border of the domain, and a falling
edge has a zero derivative at t = 0. Finally, we have to note that the role of depth of the
seabed c does not explicitly appear in the shape functions; however, it does affect the final
solutions and can be visualized on the final space and temporal dependences of the wave
height and velocity (Figures 4b and 5b) or in Figure 6. The larger the water depth, the
broader is the corresponding physical quantity. Larger water depth does not modify the
quality of the solutions; it just makes them more disperse. Thus, with a fixed numerical
value (of e.g., c = 40) and a maximal wave height of 3, we have a good approximation of
deep water phenomena. In general, it is a remarkable fact that our self-similar Ansatz is
capable of describing traveling wave pattern in a first-order hyperbolic PDE system.
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(a) (b)

Figure 5. The shape function and the solution for the spatial and temporal dependence of the x
component of the wave velocity. (a) The shape function of the x velocity component g(η) for the
above given three α exponents for the time-independent seabed function. The black, red and blue
lines correspond to α = −1, 0 and 1 values, respectively. The integral constants c1 = c2 = c3 = 1
and the geometrical constants are a = b = 1 and c = 0; (b) the spatial and temporal dependence of
velocity component u(x, y = 0, t) for α = 0; all other constants remain the same.

Figure 6. The “kinetic energy-like property” of the wave according to Equation (26) with all numerical
parameters given above.

For our last case for a time-dependent linear seabed function (17b), we have a bit
different reduced ODE system of

−α f ′ − η f ′ − g′η − ga− h′η − hb = 0,

−(−αg− ηg′)η + gη − 10η f ′ = 0,

−(−αh− ηh′)η + hη − 10η f ′ = 0,

(27a)

(27b)

(27c)

with the exponents of

α = δ = γ = arbitrary real number, β = 1. (28)

Note that all the exponents which are responsible for dissipation can have arbitrary
values as before (which allow for exploding or decaying solutions or solutions with constant
maximum in time). The only difference is the numerical value of β, which is now unity.
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As in the previous case, no closed-form analytic solutions exist for all dynamical
variables for arbitrary parameters, except for the wave height

f = (η + 20)(
a+b

4 −α−1) ·
(
− η

20
− 1
) a+b

4 −α
·(

c1 · 2F1

[
−α, 1− α; 2− a + b

2
;− η

20

]
η(1− a+b

2 )+

+c2 · 2F1

[
a + b

2
− α,

a + b
2
− α− 1;

a + b
2

;− η

20

])
; (29)

where the two 2F1[·, ·; ·; ·]s are still the hypergeometric functions [68]. The complete general
parameter study looks hopeless. Let us fix a = b = 1 first, and now the solution looks a bit
more transparent

f = (η + 20)−(α+ 1
2 ) ·(

c1 · 2F1

[
α, α + 1; 1 + 2α; 1− η

20

]
· [1− η

20
]η(α+ 1

2 )+

+c2 · 2F1

[
−α, 1− α; 1− 2α; 1− η

20

]
· [1− η

20
]

1
2−α
)

. (30)

For some relevant rational α values, the shape function becomes more simple like:

α = −1, f = c2 + c3η − 20c3 ln(η),

α = 0, f = c2,

α =
1
2

, f =
c2P
(
− 1

2 , 1, 1− 40
η

)
+ c3Q

(
− 1

2 , 1, 1− 40
η

)
√

η ·
√

η − 20
,

α = 1, f =
−c2η + 20c2 ln(η) + c3

(η − 20)2 .

(31a)

(31b)

(31c)

(31d)

where P(·, ·; ·) and Q(·, ·; ·) are the regular and irregular Legendre functions [68]. The left
part of Figure 7 presents the shape function of the water height (30) for some α exponent
values. If α is equal to −1 and −2, the graphs (the black and red curves) are almost
vertical lines. Zero alpha means a constant shape function which is quite reasonable. For
|α| = 1/2, the shape functions have finite values in the origin, can be expressed with
Legendre functions, and are defined for negative arguments only. For positive integer
αs, the functions have at asymptote at η = 20. On the right side of Figure 7, the water
height function is plotted for the α = 0 exponent. The solution is the constant wave height
function for every time and space point.

Now comes the the analysis of the velocity field. As before, there are no analytic
solutions available for the entire parameter space. For fixed a and b steepness, there are
closed formulas available for integer αs only. Unfortunately, for rational αs, the solutions
contain an additional formal integration which cannot be evaluated with analytic means.
The shape functions for the x component of water velocity are the following for the most
relevant three integer αs:

α = −1, g =
200c2

η
+ 10c3 ln(η) + c1,

α = 0, g =
c2
η

,

α =
1
2

, g =
−600c2η + 10c2η ln(η) + 20c3η + c1η2 − 40c1η + 200(2c1 + 40c2 − c3)

(η − 20)2η2 .

(32a)

(32b)

(32c)

For the sake of completeness, Figure 8a presents these three shape functions and Figure
8b shows the projected velocity field for α = 0. We tried to evaluate and plot Equation
(26) for various αs; unfortunately, we cannot find a reasonable function which could be



Mathematics 2022, 10, 2311 12 of 16

interpreted as any kind of finite water wave. Thus, there are analytic solutions available,
but these are outside of any physical interest.

2.3. Traveling Wave Analysis

Lastly, we try to analyze the original PDE system of Equation (1) with the traveling
wave Ansatz. Numerous kinds of traveling wave solutions exist for numerous water wave
equations. One of them is the Wilton ripple, which is a type of periodic traveling wave
solution of the full water wave problem incorporating the effects of surface tension [69].

For our system, we take the form of the traveling wave as

ζ(x, t) = f (x + c · t) = f (η), u = g(η), v = h(η), (33)

where c is the velocity of the wave. The obtained ODE system is slightly different from
(3a)–(3c)

c f ′ + g′l + gl′ + h′l + hl′ = 0,

c(g′l + gl′) + Gl f ′ = 0,

c(h′l + hl′) + Gl f ′ = 0.

(34a)

(34b)

(34c)

Note that, for generality, we consider that the sea bed ’l’ has the dependence of the
traveling wave argument η. The physical meaning of such a space and time-dependent
surface is of course questionable, and can be a scope of a different study. Here, we just
present the mathematical obtained results. According to Maple12, the undetermined system
of (19) has three different kinds of solutions:

(1) f (η) = c1, l(η) = 0, and g and h are arbitraryfunctions, (35)

(2) f (η) is arbitrary, l(η) =
c2

20
, g(η) = −10 f (η)

c
+ c1, h(η) = −10 f (η)

c
+ c2, (36)

(3) f (η) = c3, l is arbitrary function, h(η) =
c2

l(η)
, g(η) =

c1
l(η)

, (37)

where c1, c2, c3 are the usual integration constants. Note that, for the third kind of solution,
the wave velocities are inversely proportional to the sea-bed function. Above deep lying
sea-beds, the velocity is low, which can be understood as the direct manifestation of the
Bernoulli principle.

(a) (b)

Figure 7. The shape function and the solution for the spatial and temporal dependence of the wave
height. (a) the shape function of wave height f (η) for various αs for time-dependent linear seabed
functions. The black, red, blue, green, yellow, gray and cyan colours are for α = −2,−1,−1/2, 0, 1/2, 1
and for 2, the geometrical constants are a = b = 1 and c = 0; (b) the spatial and temporal dependence
of the water wave height ζ(x, y = 0, t) for α = 0.
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(a) (b)

Figure 8. The shape function and the solution for the spatial and temporal dependence of the x
component of the wave velocity. (a) the shape function of the x velocity component g(η) for three
α exponents for the time-dependent seabed function. The black, red and blue lines correspond to
α = −1, 0 and 1 values, respectively. The integral constants are c1 = c2 = c3 = 1 and the geometrical
constants remain the same as above. (b) the spatial and temporal dependence of velocity component
u(x, y = 0, t) for α = 0.

3. Conclusions and Outlook

We investigated a hydrodynamic system which is capable of describing water wave
propagation over a variable water depth. The question of constant and linear sea-bed
functions were addressed and analyzed. We found general analytic formulas for the spatial
and time dependent wave heights; unfortunately, for the velocity functions, no general
formulas are available. If all the parameters are fixed, then closed formulas can be derived
as well which contain various hypergeometric functions with non-trivial arguments. As
a second case, the water waves are investigated above a time-independent (we may say)
linear seabed function. We found that dispersive traveling wave solutions may exist with
constant wave height in time. As a third case, we considered a time dependent linear
seabed function and tried to find physical water waves with reasonable velocities and wave
height. Unfortunately, no such waves can be found among the mathematically existing
solutions. Finally, we investigated the traveling solutions and found not so interesting
solutions of the problem.
In a former independent study, we investigated the self-similar solutions of rotating and
stratified fluids [51] and presented analytic results. We think that, thanks to Nathan Paldor’s
monograph [70], investigating a rotating shallow water fluid system could be a natural
generalization of our present study. Investigating waves in ferrofluids could be a delicate
problem as well [71]. We hope that our results may have future applications in open
ocean engineering.
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