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Abstract

We present a non-relativistic analytic quantum mechanical model to calculate angular differential cross-sections for laser-
assisted proton nucleon scattering on a Woods–Saxon optical potential where the nth-order photon absorption is taken into
account simultaneously. With this novel description we can integrate two well-established fields, namely low-energy
nuclear physics and multi-photon processes together. As a physical example we calculate cross-sections for proton–12C
collision at 49 MeV in the laboratory frame in various realistic laser fields. We consider optical Ti:sapphire and X-ray
lasers with intensities which are available in existing laser facilities or in the future ELI or X-FEL.
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1. INTRODUCTION

Nowadays optical laser intensities exceeded the 1022 W/cm2

limit where radiation effects dominate the electron dynamics.
In the field of laser–matter interaction a large number of non-
linear response of atoms, molecules, and plasmas can be
investigated both theoretically and experimentally. Such in-
teresting high-field phenomena are high harmonic genera-
tions, or plasma-based laser-electron acceleration. These
field intensities open the door to high-field quantum electro-
dynamics phenomena like vacuum-polarization effects of
pair production (Di Piazza et al., 2012). In most of the pre-
sented studies the dynamics of the participating electrons
are investigated. Numerous surveys on laser-assisted electron
collisions are available such as Ehlotzky et al. (1998). How-
ever, there are only few nuclear photo-excitation investiga-
tions done where some low-lying first excited states of
medium of heavy elements are populated with the help of
X-ray free-electron laser pulses (Gunst et al., 2014). Nuclear
excitation by atomic electron re-scattering in a laser field was
investigated by Kornev and Zon (2007). Various additional
concepts are under consideration for photo-nuclear reactions
by laser-driven gamma beams (Habs et al., 2009). Some

applications of laser-induced nuclear physics can be found
in the study of Ledingham (2005).

To our knowledge there are no publications available
where laser-assisted proton nucleus collisions (or radiative
proton–nucleus scattering) were investigated. This is the
goal of our recent paper. We consider the global optical
potential of Woods and Saxon (1954) (WS) with the
proper parameterization for moderate energy proton–12C col-
lision (Abdul-Jalil & Jackson, 1979). The optical potential
formalism has been a very successful method to study the
single-particle spectra of nucleus in the last five decades. De-
tailed description and the validity of this formalism can be
found in nuclear physics textbooks or in monographs like
von Geramb (1979); Varner et al., (1991); Hodgson
(1994); Greiner and Maruhn (1996).

The nuclear physics community recently managed to eval-
uate the closed analytic form of the Fourier transformed WS
interaction (Hlophe et al., 2013) which is a great success.
Former time only an analytic series function was available
to approximate the WS potentials (Pahlavani & Morad,
2010).

We incorporate these results into a first Born approxima-
tion scattering cross-section formula where the initial and
final proton wave functions are Volkov waves and the in-
duced photon emission and absorption processes are taken
into account up to arbitrary orders (Bunkin & Fedorov,
1965; Bunkin et al., 1973; Faisal 1973; 1987; Kroll &
Watson, 1973; Gontier & Rahman, 1974; Bergou, 1980;
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Bergou & Varró, 1980). This kind of multi-photon de-
scription was very successful in the last four decades and
helped to understand various optical and physical
phenomena.
We hope that our description will open a new path in the

field of photo-nuclear studies in the near future. For a
better understanding we end our study with two physical ex-
amples where 49 MeV protons are scattered on 12C nuclei in
various laser fields. At first we consider the field of a Ti:sap-
phire laser which has optical frequency with intensities even
1022 W/cm2. As a second case we present calculations for
X-ray lasers which have much larger photon energy but
much lower intensity available at the time.

2. THEORY

In the following, we summarize our applied non-relativistic
quantum mechanical description. The laser field is handled in
the classical way via the minimal coupling. The laser beam is
taken to be linearly polarized and the dipole approximation is
used. If the dimensionless intensity parameter (or the normal-
ized vector potential) a0 = 8.55 × 10−10

�����������
I(W/cm2)

√
λ(μm)

of the laser field is smaller than unity the non-relativistic
description in dipole approximation is valid. For 800 nm
laser wavelength this means a critical intensity of I= 2.13 ×
1018 W/cm2. In case of protons a0 is replaced by ap= [(mp/
me)

−1]a0, where the proton to electron mass ratio is (mp/
me)= 1836. Accordingly, for 800 nm wavelength the critical
intensity for protons is Icrit= 3.91 × 1021 W/cm2.
Beyond the optical regime we investigate the scattering

process in an X-ray laser field as well. Typical X-ray lasers
can have photon energy in the range of 1–10 keV, pulse
energy of 3 mJ and 1012–1013 photons/s photon number
and the pulse duration is between 10 and 100 fs (the wave-
length of a 10 keV X-ray photon is 18.2 nm). In the X-ray
laser community, the photon number is the crucial parameter
and not the intensity. However, the maximal achievable in-
tensity can be calculated when the maximal focal spot is
known. Focusing of X-ray laser pulses gives up numerous
not trivial questions for experimentalist and still under devel-
opment therefore we consider a maximal available intensity
at 1016 W/cm2 for a 10 keV laser pulse in our last model,
where the dimensionless intensity parameter a0= 1, 5 ×
10−5. Note, that this is a small value compared to optical fre-
quencies. The critical intensity for the 10 keV photon is a
factor of 1836 times higher than for the 800 nm optical
frequency.
Additionally, we consider moderate proton kinetic energy,

not so much above the Coulomb barrier and neglect the inter-
change term between the proton projectile an the target
carbon protons. This proton exchange effect could be includ-
ed in the presented model with the help of Woods–Saxon po-
tentials of non-local type (Barna et al., 2000) but not in the
scope of the recent study.
To describe the non-relativistic scattering process of a

proton on a nucleus in a spherically symmetric external

field the following Schrödinger equation has to be solved,

1
2m

p̂− e

c
A

( )2
+ U(r)

[ ]
Ψ = ih− ∂Ψ

∂t
, (1)

where p̂ = −ih− ∂/∂r is the momentum operator of the proton,
and U(r) represents the scattering potential of the nucleon,
A(t) = A0e cos(ωt) is the vector potential of the external
laser field with unit polarization vector e. Figure 1 presents
the scattering geometry for a better understanding. The pi
and pf are the initial and final proton momenta, θ is the scat-
tering angle of the proton, the laser is linearly polarized in
the x–z plane, and the propagation of the laser field is par-
allel to the x-axis.
Without the external scattering potential U(r) the particu-

lar solution of (1) can be immediately written down as non-
relativistic Volkov states φp(r, t) which exactly incorporate
the interaction with the laser field,

φp(r, t) =
1

(2πh− )3/2 exp
i

h− p · r−
∫t
t0

dt′
1
2m

p− e

c
A(t′)

( )2[ ]
.

(2)

Volkov states, which are modulated de Broglie waves, pa-
rameterized by momenta p and form an orthonormal and
complete set,

∫
d3rφ∗

p(r, t)φp′ (r, t) = δ3(p− p′),∫
d3pφp(r, t)φ∗

p(r′, t) = δ3(r− r′). (3)

To solve the original problem of Eq. (1) we write the exact
wave function as a superposition of an incoming Volkov
state and a correction term, which vanishes at the beginning

Fig. 1. The geometry of the scattering process. The 12C nucleus is in the
center of the circle, pi and pf stand for the initial and final scattered proton
momenta, θ is the proton scattering angle, laser pulse propagates parallel
to the x-axis and linearly polarized in the x–z plane. The χ angle is needed
for the laser-proton momentum transfer.
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of the interaction (in the remote past t0→−∞). The correc-
tion term can also be expressed in terms of the Volkov
states, since these form a complete set [see the equation of
(3)],

Ψ(r, t) = φpi
(r, t) +

∫
d3pap(t)φp(r, t), ap(t0) = 0. (4)

It is clear that the unknown expansion coefficients ap(t) de-
scribe the non-trivial transition symbolized as pi→p, from
a Volkov state of momentum pi to another Volkov state
with momentum p. If we take the projection of Ψ into
some Volkov state φp(t), we get

∫
d3rφ∗

p(r, t)Ψ(r, t) = δ3(p− pi) + ap(t). (5)

Bye inserting Ψ of Eq. (4) into the complete Schrödinger
equation (1), we receive the following integro-differential
equation for the coefficients ap(t):

ih− ȧp′ (t) =
∫
d3rφ∗

p′ (r, t′)U(r)φpi
(r, t′)

+
∫
d3pap(t)

∫
d3rφ∗

p′ (r, t′)U(r)φp(r, t′), (6)

where the scalar product was taken with φp′ (t) on both sides
of the resulting equation and the orthogonality property of
the Volkov sates was taken after all [see the first equation
of (3)]. Owing to the initial condition ap(t0)= 0, displayed
already in Eq. (4) the formal solution of (6) can be written as

ap′ (t) = − i

h−
∫t
t0

dt′
∫
d3rφ∗

p′ (r, t′)U(r)φpi
(r, t′)

− i

h−
∫t
t0

dt′
∫
d3pap(t′)

∫
d3rφ∗

p′ (r, t′)U(r)φp(r, t′). (7)

In the spirit of the iteration procedure used in scattering
theory the (k+1)th iterate of ap(t) is expresses by the kth it-
erate on the right-hand side in (7) like

a(k+1)
p (t) = − i

h−
∫t
t0

dt′
∫
d3rφ∗

p′ (r, t′)U(r)φpi
(r, t′)

− i

h−
∫t
t0

dt′
∫
d3pa(k)p (t′)

∫
d3rφ∗

p′ (r, t′)U(r)φp(r, t′). (8)

In the first Born approximation [where the transition ampli-
tude is linear in the scattering potential U(r)], we receive
the transition amplitude in the next form

Tfi = lim
t�∞

lim
t0�−∞

a(1)pf
(t)

= − i

h−
∫∞
−∞

dt′
∫
d3rφ∗

pf
(r, t′)U(r)φpi

(r, t′). (9)

By taking the explicit form of the Volkov states (2) with the
vector potential A(t)= eA0cos(ωt) we observe that the A2

term drops out from the transition matrix element (9), and
Tfi becomes

Tfi =
∑∞
n=−∞

T (n)
fi ,

T (n)
fi = −2πiδ

p2f − p2i
2m

+ nh− ω

( )
Jn(z) U(q)

(2πh− )3 ,
(10)

before the time integration was done, the exponential expres-
sion was expanded into a Fourier series with the help of the
Jacobi–Anger formula (Abramowitz & Stegun, 1972) which
gave us the Bessel function

eiz sin(ωt) =
∑∞
n=−∞

Jn(z) einωt . (11)

The U(q) is the Fourier transformed of the scattering poten-
tial with the momentum transfer of q ≡ pi − pf where pi is
the initial and pf is the final proton momenta. The absolute
value is q =

������������������������������
p2i + p2f − 2 pi pfcos(θ pi, pf )

√
. In our case, for

49 MeV energy protons absorbing optical photons the fol-
lowing approximation is valid q≈ 2pi|sin(θ/2)|.

The Dirac delta describes photon absorptions (n<0) and
emissions (n>0) with energy conservation.

Jn(z) is the Bessel function with the argument of

z ≡
me

mp
a0(q̂e) 2 pih− k0

|sin(θ/2)|, (12)

where me and mp are the electron and proton masses, a0 is the
dimensionless intensity parameter (given above), q̂ and e are
the unit vectors of the momentum transfer and the laser
polarization direction. It can be shown with geometrical
means that for low-energy photons where (Eph < Ep+ ) the
angle in the scalar product of q̂e ≡ cos χ is χ= π/2−θ/2
where θ is the scattering angle of the proton varying from
0 to π. See Figure 1.

From ( pi/h− k0) =
���������(mp/me)

√ ������������������
(2mec2Ei/h− 2

ω2
0)

√
collecting

the constants together the final formula for z reads

z = 1.4166 × 10−3

h− ω0

������
Ep

1836

√ ��
I

√
× cos(χ) × |sin(θ/2)|, (13)

where the laser energy ħω0 is measured in eV, the proton
energy Ep in MeV, and the laser intensity I in W/cm2

(note that this formula is valid for any kind of external
laser field. For a 49 MeV proton projectile even the 10 keV
X-ray laser has a negligible energy). The final differential
cross-section formula for the laser associated collision with
simultaneous nth-order photon absorption and emission
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processes is

dσ(n)

dΩ
= pf

pi
J2n (z)

dσB
dΩ

. (14)

The dσB/dΩ = (m/2πh− 2
)2|U(q)|2 is the usual Born cross-

section for the scattering on the potential U(r) alone (without
the laser field). The expression Eq. (14) was calculated with
different authors using different methods (Bunkin & Fedor-
ov, 1965; Bunkin et al., 1973; Faisal, 1973; 1987; Kroll &
Watson, 1973; Gontier & Rahman, 1974; Bergou, 1980;
Bergou & Varró, 1980).
In our case the scattering interaction U(r) is a central field

U(r) which is the sum of the Coulomb potential of a uniform
charged sphere (Rudchik et al., 2010) and a short range op-
tical (Woods & Saxon, 1954) potential

U(r) = Vc(r) + Vws(r) + i[W(r) +Ws(r)] + Vls(r)l · σ, (15)

where the Coulomb term is

Vc = ZpZte2

2R0
3− r2

R2
c

( )
, r < Rc,

Vc = ZpZte2

r
, r ≥ Rc,

(16)

where Rc = r0A
1/3
t is the target radius calculated from the

mass number of the target with r0= 1.25 fm. Zp and Zt are
the charge of the projectile and the target and e is the elemen-
tary charge. This kind of regularized Coulomb potential
helps us to avoid singular cross-sections and routinely used
in nuclear physics.
The short-range nuclear part is given via

Vws(r) = −Vr fws(r,R0, a0),
W(r) = −Vv fws(r,Rs, as),
Ws(r) = −Ws(−4as) f ′ws(r,Rs, as),
Vls(r) = −(Vso + iWso)(−2)gws (r,Rso, aso),

fws(r,R, a) = 1

1+ exp
r − R

a

( ) ,

f ′ws(r,R, a) =
d

dr
fws(r,R, a),

gws(r,R, a) = f ′ws(r,R, a)/r.

(17)

The constants Vr, Wv, Vso, and Wso are the strength parame-
ters, and a0,s,so, R0,s,so are the diffuseness and the radius pa-
rameters given for large number of nuclei. The f function is
called the shape function of the interaction. As we will see
at moderate collisions energies the complex terms become
zero. In the last part of the present paper we will use the nu-
merical parameters of Abdul-Jalil and Jackson (1979) for
proton–carbon collision. According to the work of Hlophe
et al. (2013) the complete analytic form of the Fourier

transform of the WS potential can be calculated via the fol-
lowing kind of complex integrals
V(q) = �∞

0 dz (z exp(iρkz))/(1+ exp(z−(
αk))), where ρk=

qak, αk= Rk/ak and z= r/ak are dimensionless variables.
The integrals can be evaluated by contour integration using
the residuum theorem. For exhaustive details, see Hlophe
et al. (2013). The Fourier transformed second term of Eq.
(15) reads

Vws(q) = Vr

π2
πa0e−πa0q

q(1− e−2πa0q)2 R0(1− e−2πa0q) cos(qR0)
[{

−πa0(1+ e−2πa0q) sin(qR0)
]

−a30e
−(R0/a0) 1

(1+ a20q
2)2

− 2e−(R0/a0)

(4+ a20q
2)2

[ ]}
. (18)

For the W(q) imaginary term, the same expression was de-
rived with Wv, as, and Rs instead of Vr, a0, and R0. The sur-
face termWs (r) [fourth term in Eq. (15)] gives the following
formula in the momentum space:

Ws(q) = − 4as
Ws

π2
πase−πasq

(1− e−2πasq)2 (πas(1+ e−2πasq)[{

− 1
q
(1− e−2πasq)) cos(qRs) + Rs(1− e−2πasq) sin(qRs)

]

+a2s e
−(Rs/as) 1

(1+ a2sq
2)2 −

4e−(Rs/as)

(4+ a2sq
2)2

[ ]}
.

(19)

The last term in Eq. (15), the transformed spin–orbit coupling
term leads to

Vls(q) = − aso
π2

(Vso + iWso) 2πe−πasoq

1− e−2πasoq
sin(qRso)

{

×+e(−Rso/aso) 1
1+ a2soq

2
− 2e−Rso

4+ a2soq
2

( )}
. (20)

where the momentum transfer is defined as above q≡ pi−pf.
The low-energy transfer approximation formula q≈ 2pi-
|sin(θ/2)| is valid.
The Fourier transform of the charged sphere Coulomb

field is also far from being trivial

Vc(q) = ZpZte2

2(5/6)
��
π

√
q3

−2·3(1/3)q cos[2(2/3)3(1/3)q](
+2(1/3)(1+ 2·2(1/3)3(2/3)q2)sin[2(2/3)3(1/3)q])
+3ZpZte

2

��
2
π

√
iπ|q|
2q

− Ci[2(2/3)3(1/3)q] + log(q)
(

− log |q| − iSi[2(2/3)3(1/3)q]
)
,

(21)

where Ci and Si are the cosine and the sine integral functions,
respectively; for details see Abramowitz and Stegun (1972).
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3. RESULTS

We applied the outlined method to 49 MeV proton–12C scatter-
ing. Table 1 contains the parameters of the used Woods–Saxon
potential.
Note that the complex partWv and the complex part of the

spin–orbit term Wso are zero at this energy.
Figure 2 presents the angular differential cross-section in

the first Born approximation of the various Woods–Saxon
potential terms for 49 MeV elastic proton–12C scattering.
The different lines represent the different terms Eqs.
(18)–(20). The laboratory frame is used in the calculation.
For a better transparency the contributions of the regularized
Coulomb term is not presented. Our calculated total cross-
section of the elastic scattering is 201 mbarn which is consis-
tent with the data of Abdul-Jalil and Jackson (1979).
In our case, the laser photon energy is ħω0= 1.56 eV,

which means 800 nm wavelength and the proton energy is
Ep= 49 MeV. With these values the argument of the
Bessel function Eq. (13) becomes the following:

z = 1.48 × 10−3
��
I

√
× cos(χ) × |sin(θ/2)|

= I × cos(χ) × |sin(θ/2)|. (22)

Figure 3 shows the angular differential cross-section for n=
0, 1, 2 photon absorptions for I = 100 which means I=
4.56 × 1011 W/cm2 moderate intensity. Note that the cross-
sections for single and double photon absorption are
almost the same. The single-photon absorption total cross-
section is 0.5 mbarn.
For large laser field intensities, which means large z argu-

ments of the Bessel functions the following asymptotic ex-
pansion can be used for a fixed index (Abramowitz &
Stegun, 1972)

Jn(z) =
�������
2/(πz)

√
cos(z− nπ/2− π/4), (23)

which means an approximate 1/
��������������
sin(θ) cos(θ)√

angle depen-
dence which has a strong decay for large scattering angles.
Note that even this function shows very rapid oscillations.

Figure 4 shows the same kind of cross-sections for z=
10,000 (which means I= 4.56 × 1015 W/cm2 intensity)
and for z= 6.61 × 106 (which means I= 2.0 × 1021 W/cm2

intensity), respectively. Only the n= 1 one photon absorp-
tion process is considered.

As a second physically relevant example we present the
scattering cross-sections in the presence of an X-ray laser
field. For the 10 keV laser field of 1016 W/cm2 intensity
the I parameter in Eq. (22) has the values of 0.162. Figure 5
presents the cross-sections curves for n= 0, 1, 2. Note that
the I parameter makes the Bessel functions very small at
small angles.

4. SUMMARY

We presented a formalism which gives an analytic angular
differential cross-section model for laser-assisted proton

Table 1. Parameters of the applied potential for proton–12C
collision at Ei= 49 MeV

Name of the parameter Numerical value

VR 31.31 (MeV)
R0 1.276 (fm)
a0 0.68 (fm)

Ws 5.98 (MeV)
rs 0.890 (fm)
as 0.586 (fm)

Vso 2.79 (MeV)
Rso 0.716 (fm)
aso 0.222 (fm)

Fig. 2. The angular differential cross-sections in the first Born approxima-
tion of the various Woods–Saxon potentials terms for 49 MeV elastic
proton–12C scattering. The solid, dashed, and dotted lines are the contribu-
tions of Eqs. (18, 19, 20), respectively. Note the different smoothness and
different back scattering values of the different terms.

Fig. 3. The calculated angular differential cross-sections from Eq. (14) for
I= 4.56 × 1011 W/cm2 laser field intensity (I = 100). The thick solid,
thin long-dashed, and thin short-dashed lines are for n= 0,1,2 photon
absorptions.
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nucleon scattering on a Woods–Saxon optical potential
where the nth-order photon absorption is taken into account
simultaneously. We coupled the mathematical description of
multi-photon processes to the well-established low-energy
nuclear physics description. As an example the physically
relevant proton–12Ca collision system was investigated at
moderate 49 MeV proton energies. Two different kinds of
laser fields are investigated. The first one is the optical Ti:sap-
phire system with wavelength of 800 nm with intensities in the
range of 1011–1021 W/cm2. As a second system we took a
10 keV X-ray laser field with 1016 W/cm2 intensity. The cal-
culated cross-sections are much lower than the elastic cross-
sections in all cases. We hope that our study will give a strong
impetus and couple the nuclear and laser physics community
together to perform such experiments in the ELI or X-FEL
facilities which will be available in a couple of years.
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