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A theoretical study of laser and plasma based electron acceleration is presented. An effective model has
been used, in which the presence of an underdense plasma has been taken account via its index of
refraction nm. In the confines of this model, the basic phenomena can be studied by numerically solving
the classical relativistic equations of motion. The key idea of this paper is the application of chirped,
bichromatic laser fields. We investigated the advantages and disadvantages of mixing the second
harmonic to the original k ¼ 800 nm wavelength pulse. We performed calculations both for plane wave
and Gaussian pulses.
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1. Introduction

The history of laser–plasma based electron acceleration began
in the late ’70-s. Tajima and Dawson predicted that the plasma
wakes, generated by the ponderomotive force of short, intense
laser pulses, are capable to accelerate bunches of electrons effec-
tively [1]. In this scheme, there are many methods for generating
high amplitude plasma wakes, for a summary, see Ref. [2].
The key point in every method is the resonant excitation of the
plasma. In the middle ’80-s, the invention of the Chirped Pulse
Amplification (CPA) made it possible to generate short, intense
laser pulses without damaging the medium [3]. This new
technology is an important milestone both in the history of laser
physics and compact, plasma based particle accelerators.
Nowadays, thanks to the advanced technological developments,
the vision of Tajima and Dawson is getting reality.

There is a serious demand for that, since the conventional stor-
age ring technology has reached its limits: the amplitude of the
accelerating gradient must not be larger than 50 MV=m. The viola-
tion of this criterion would lead to electric discharges that would
critically damage the system. The present state-of-the-art technol-
ogy, namely, the CERN–LHC, is based on 8:3 T strong superconduct-
ing magnets. This way, the theoretical maximum of center-of-mass
(CM) energy is 14 TeV. According to the most recent news, the
LHC is operating at 13 TeV at the moment. Using the standard
technology, the maximal CM energy can be improved in two
independent ways. One either has to build a larger ring (VLHC),
with a circumference of 80 or 100 km s, or develop stronger
(e.g. 21 T) superconducting magnets. Both solutions would be
extremely expensive, and the latter is also very uncertain, there
is no guarantee for it to succeed. Due to theses difficulties, new
technologies are needed. The most popular of them is the concept
of laser–plasma based particle accelerators, that has been men-
tioned above. Nowadays, there are promising experimental results
for building compact particle accelerators: electrons have been
accelerated up to multiples of GeVs within a few cm long plasma
cell [4,5]. CERN is also open for new technologies: the construction
of the CERN AWAKE experiment (Proton Driven Plasma Wakefield
Acceleration) has already begun. The details of the proposed
scheme can be found in [6,7]. It is important to mention that this
scheme has been designed for electron acceleration only. For a long
time, it was thought that acceleration of positrons by plasma
wakes is impossible. Recently, it has been shown that by applying
a ‘‘doughnut shaped” driver pulse, laser–plasma based positron
acceleration can be realized as well [8].

This study is the sequel of our recent work [9]. In that paper, an
effective theory for describing electron acceleration in underdense
plasmas has been presented. We showed that a single electron can
be effectively accelerated both by monochromatic planewave
pulses and Gaussian laser pulses, up to 270 MeV, which agrees
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quite well with other theoretical and experimental results. In the
present paper we investigate the advantages of applying a bichro-
matic driver pulse, namely, adding the second harmonic to the
original laser pulse. Ehlotzky’s work [10], which summarizes
various relevant atomic phenomena in bichromatic laser fields
gave us a good motivation and serves as a starting point of our
present work. To our knowledge, there is no such approach in
the literature. However, there is a nice proposal for producing
narrow-energy-spread electron bunches from laser wakefield
acceleration, using bichromatic laser pulses [11].

In Section 2, the fundamental theoretical basics of laser–plasma
based electron acceleration are overviewed, within the confines of
our effective theory. The results are presented in Section 3. Finally,
we summarize our work.

2. Theory

During the laser–electron interaction, the Lorentz-force drives
the motion of the electron:

F ¼ e Eþ v � Bð Þ ð1Þ
with e the electron charge, E the electric field, B the magnetic field,
v the velocity of the electron and F the Lorentz-force. At sufficiently
high intensities, the electron becomes relativistic. Therefore, one
has to solve the relativistic Newton–Lorentz equation:

dp
dt

¼ e Eþ p
mec

� B
� �

; ð2aÞ
dc
dt

¼ 1
mec2

F � v: ð2bÞ

It is known that the electromagnetic field has to satisfy the electro-
magnetic wave equation. This condition yields the most general
form for the electric and magnetic field:

Eðt; rÞ ¼ eE0f xH t; rð Þ½ �; ð3Þ

Bðt; rÞ ¼ 1
c
n� EðtÞ ð4Þ

with e the polarization vector, E0, the amplitude of the electric field,
x the angular frequency and n the unit vector of the propagation of
the electromagnetic field, respectively. f may be any arbitrary,
smooth function. For a better transparency, we introduced the
following notation, since the electromagnetic field depends only
on the planewave-argument

Hðt; rÞ :¼ t � n � r
c
: ð5Þ

If we also want to take into account the presence of a medium
with an index of refraction nm < 1—for instance, an underdense
plasma, which is the field of our present investigation—, we need
to generalize the definition of Hðt; rÞ in the following way:

Hðt; r;nmÞ :¼ t � nmn � r
c
: ð6Þ

We interpret the generalized definition of H such that it describes
the electron propagation in an underdense plasma [12]. All the
background effects are incorporated into nm, which depends on
the laser and plasma frequencies xL and xp, respectively, in the
following way:

nm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

p

x2
L

s
ð7Þ

with

x2
p ¼ nee2

e0me
ð8Þ
with ne the electron density in the plasma, e0 the permittivity of
vacuum and me the electron mass.

This approximation yields an effective theory which is useful for
performing basic studies of the laser and plasma based electron
acceleration via numerically solving the relativistic equations of
motion (2), treating E and B as a function of Hðt; r;nmÞ. The
nm ¼ 1 case describes the pure laser based electron acceleration.
It is important to mention that a single electron cannot gain a
net energy from a plane wave pulse in vacuum since during one
pulse period, the electron gains and loses the same amount of
energy during oscillating in the laser field. However, this symmetry
can be broken by applying a (linear) chirp to the laser frequency:

xðtÞ ¼ x0 þ rt; ð9Þ
r being the chirp parameter and x0 the initial frequency of the
laser.

It is convenient and useful to rescale the parameters and
introduce the following dimensionless variables:

a0 ¼ eE0

mex0c
;

x0t ! t;
x0

c
r ! r;

p
mec

! p; ð10Þ

x0H ! H;
r
x2

0

! r:

The equations of motion, expressed in terms of these new variables,
take the following form:

dp
dt

¼ a0 Eþ p
c
� B

� �
; ð11aÞ

dc
dt

¼ a0
c
E � p: ð11bÞ

In general, a bichromatic electromagnetic field can be expressed in
the compact form of

E ¼ E1 þ A
q
Eq; ð12aÞ

B ¼ B1 þ A
q
Bq ð12bÞ

with E1 and B1 being the electric and magnetic fields of the main
harmonic and 0 6 A 6 1 the relative amplitude of the harmonics.
q denotes the index of the (higher) harmonic with qx0 initial
frequency. The q�1 factor is a direct consequence of the definition
of the intensity parameter a0 (see Eq. (10)):

a0ðqx0Þ ¼ a0ðx0Þ
q

ð13Þ

For first, we define the qth harmonic of a bichromatic plane wave
pulse with a sine-square shaped temporal envelope:

f Hð Þ ¼
sin2 pH

x0T

� �
�

sin qHþ q2rqH
2 þuq

� �
if H 2 0; T½ �

0 otherwise

8>>><
>>>:

ð14Þ

with T the pulse duration, rq the dimensionless chirp parameter
and uq with q ¼ 1 the carrier–envelope phase and uq with q > 1
the relative phase of the harmonics. The electric field is polarized
in the x direction and propagates in the y direction, that is,
e ¼ ex;n ¼ ey.

Gaussian pulse shapes provide a more realistic description of
laser beams. The mathematical expressions for an x-polarized
Gaussian beam that propagates in the z direction can be derived
from the paraxial approximation [13,14]. The explicit expressions
containing first order corrections can be found in many works,
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ig. 1. The x component of the electric field of a chirped, monochromatic (solid line)
nd bichromatic (dashed line) plane wave pulse. k ¼ 800 nm; T ¼ 35 fs; a0 ¼ 0:22;
¼ 0:48;r1 ¼ �5:510 � 10�3;r2 ¼ �1:311 � 10�3;u1 ¼ 0. Note the enhancement of
e accelerating field for the bichromatic case.
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see e.g. [15,16]. Here we only present the generalizations of these
formulae for the qth harmonic in terms of dimensionless variables:

Eq;x ¼ W0

WqðzÞ exp � r2

W2
qðzÞ

" #
exp � H2

x0Tð Þ2
" #

� cos
kqr2

2RqðzÞ �UqðzÞ þ qHþ q2rH2 þuq

� �
; ð15aÞ

Eq;y ¼ 0; ð15bÞ

Eq;z ¼ � x
RqðzÞ Eq;x þ 2x

kqW
2
qðzÞ

� W0

WqðzÞ exp � r2

WqðzÞ
� �

exp � H2

x0Tð Þ2
" #

� sin
kqr2

2RqðzÞ �UqðzÞ þ qHþ q2rH2
q þuq

� �
ð15cÞ

and the magnetic field is given by

Bq;x ¼ 0; ð16aÞ
Bq;y ¼ Eq;x; ð16bÞ

Bq;z ¼ y
RqðzÞ Eq;x þ 2y

kqW
2
qðzÞ

� W0

WqðzÞ exp � r2

W2
qðzÞ

" #
exp � H2

x0Tð Þ2
" #

� sin
kqr2

2RqðzÞ �UqðzÞ þ qHþ q2rH2 þ /q

� �
ð16cÞ

with W0 ¼ ðx0=cÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0zq;R=p

p
the beam waist, WqðzÞ ¼ ðx0=cÞ

1þ ðz=zq;RÞ2
h i1=2

the beam radius at distance z;RqðzÞ ¼ ðx0=cÞz
1þ ðzq;R=zÞ2
h i

the radius of curvature, UqðzÞ ¼ tan�1ðz=zq;RÞ the Guoy
phase, zq;R the Rayleigh length, kq ¼ qð1þ qrqHÞ the dimensionless
wavenumber of the qth harmonic, k0 the initial wavelength of the
main harmonic and T the pulse duration.

The construction of a bichromatic Gaussian pulse implies some
problems. Theoretically, there is a freedom by defining the
parameters of the individual harmonics: one has to choose either
the beam waists or the Rayleigh lengths to be equal. Since the
beam waist and the Rayleigh length depend on each other, equal
Rayleigh lengths would result in different beam waists. From the
expressions given above if follows that the main and the higher
harmonics have the same beam waist, this is the physically
relevant choice. However, the equality of the beam waists implies
the difference of the Rayleigh lengths. It is also clear from Eqs. (15),
(16) and (12) that the precise mathematical expression of a bichro-
matic Gaussian pulse is rather complicated.

3. Results

In this section we discuss the advantages and disadvantages of
applying bichromatic (q ¼ 2) laser pulses for laser and plasma
based electron acceleration. As discussed in our earlier work [9],
within the confines of the present approach the nm < 1 case agrees
quite well with the nm ¼ 1 case, since at relevant plasma densities
the refraction index of an underdense plasma differs negligibly
from unity.

We investigated the effect of the presence of the second har-
monic. We found that by properly chosen parameters the energy
gain of the electron can be enhanced by 4% or more. Graphically
said, this is due to the increment of the accelerating field at the
sharp rising and falling edges at the last oscillations of the electric
field (see Fig. 1).

In our calculations we chose the relative phase of the two har-
monics to be zero. We compared the energy gain provided by a
monochromatic and a bichromatic pulse such that the two pulses
have the same intensity. This means that if the intensity parameter
F
a
A
th
of a monochromatic pulse is a0, then the intensity parameter of the
corresponding bichromatic pulse is ba0 with

b ¼
RHf
Hi

j E1j2dHRHf
Hi

j E1 þ A
2E2j2dH

0
@

1
A

1=2

ð17Þ

withHi andHf being the plane wave arguments at times ti and tf as
the interaction between the electron and the pulse starts and fin-
ishes. The subscripts i and f denote ‘‘initial” and ‘‘final”, respectively.
This normalization guarantees that the monochromatic and
bichromatic pulses have the same intensity and validates the
comparison of the energy gains from the two different pulses.

The additional energy gain via the presence of the second
harmonic had been investigated in the following way. We took a
monochromatic pulse with a fixed pulse duration at a given
intensity and determined the optimal laser parameters and initial
conditions that provide the most energy gain. After that we sought
the optimal intensity ratio between the main and second harmonic
while all the other parameters stayed fixed. At the determination
of the optimal parameters we used the popular Nelder–Mead
(also called ‘‘downhill simplex”) method [17].

At first we present the results for plane wave pulses, then for
Gaussian pulses. We emphasize only the additional energy gain
caused by the presence of the second harmonic. That is, we normal-
ize the energy gains (DE) to the optimal energy gain achieved by the
corresponding a monochromatic pulse (DE0 Að Þ) at the same inten-
sity. The relative energy gain is defined by DE=DE0ðAÞ. We also
investigate the behavior of the energy gain as a function of the
parameters of the two harmonics at fixed intensity ratio, namely,
the chirp parameters and the carrier–envelope phase. In these cases
we also scale the energy gain to unity, the normalization factor is
the maximal energy gain (denoted by DEmax) in a given parameter
range. The scaled energy gain is also referenced as relative energy
gain as is defined by DE=DEmax. To avoid ambiguity, the labels on
the figures have been explicitly denoted. For a better transparency
we note that the values of a0 ¼ 0:22;7;12 and 22 correspond to the
intensities of I ¼ 1017;1020;3 � 1020 and 1021 W=cm2, respectively.

3.1. Plane wave pulses

We found that the net energy gain depends very weakly on the
chirp parameter of the second harmonic. The energy gain is dom-
inated by the chirp parameter of the main harmonic, this is indi-
cated by the vertical stripes on Fig. 2. Practically this means that
r2 can be chosen to be zero. As a consequence, both the experi-
mental realization and numerical calculations are easier.

It is not surprising that the carrier–envelope phase plays a very
important role. However, it is not obvious that the energy gain
depends very sensitively on u1: there are two ‘‘worst-case” values



Fig. 2. The relative energy gain as a function of the dimensionless chirp parameters.
Note that the r2-dependence is negligible. k ¼ 800 nm; T ¼ 75 fs; a0 ¼ 22;A ¼ 0:7;
u1 ¼ 0.
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Fig. 3. The relative energy gain as a function of the carrier–envelope phase.
k ¼ 800 nm; T ¼ 75 fs; A ¼ 0:7;r1 ¼ �5:518 � 10�3;r2 ¼ �1:732 � 10�3; a0 ¼ 22
(solid line), a0 ¼ 7 (dashed line). Note the sensitivity to u1!
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Fig. 4. The relative energy gain as a function of the relative amplitude of the
harmonics. The presence of the second harmonic enhanced the energy gain by
about 4%. k ¼ 800 nm; T ¼ 75 fs; a0 ¼ 22;r1 ¼ �5:530 � 10�3;r2 ¼ �1:732 � 10�3;

u1 ¼ 0.
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Fig. 5. The relative energy gain as a function of the carrier–envelope phase.
k ¼ 800 nm; T ¼ 5 fs;r1 ¼ 8:494 � 10�3;r2 ¼ 0;A ¼ 0:24. a0 ¼ 7;W0 ¼ 22:44p (solid
line), a0 ¼ 12;W0 ¼ 20p (dashed line).

Fig. 6. The relative energy gain as a function of the chirp parameters. DE depends
very weakly on r2. k ¼ 800 nm; T ¼ 5 fs; a0 ¼ 2;W0 ¼ 20p; A ¼ 0:1;u1 ¼ 2:058.
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Fig. 7. The relative energy gain as a function of the relative amplitude of the
harmonics. The second harmonic enhanced the energy gain by about 20–30%,
compared to the monochromatic case. k ¼ 800 nm; T ¼ 5 fs;r1 ¼ 8:494 � 10�3;

r2 ¼ 0. a0 ¼ 7;W0 ¼ 20p;u1 ¼ 0 (solid line), a0 ¼ 12;W0 ¼ 22:44p;u1 ¼ 0 (dashed
line).
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at which the net energy gain is zero. There are also two optima,
near p=4 and 3p=4 (see Fig. 3).

Fig. 4 shows the key point of our study: at properly chosen laser
parameters the energy gain of a single electron can be enhanced
with approximately 4% by mixing the second harmonic to the main
harmonic with a suitable intensity ratio. In the next subsection it
can also be seen that if the intensity ratio has not been set cor-
rectly, then the application of the second harmonic results in a
net energy loss compared to the monochromatic case (see Fig. 7).
3.2. Gaussian pulses

In general, a Gaussian pulse can transfer the most energy to a
single electron if the electron initially moves on-axis an co-
propagates with the beam. Namely, the initial momentum of the
electron has the form of p0 ¼ p0ez. This choice guarantees that
the interaction length will be as high as possible. It is also impor-
tant to initially place the electron far enough to not to feel the
electric field of the pulse. The initial position of the electron has
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the form of x0 ¼ x0ez. The dimensionless initial position is specified
by x0 ¼ px0T that corresponds to a pcT distance from the center of
the pulse. After these considerations it should be clear that the
larger the value of p0 the larger the energy gain. This has been also
confirmed by our numerical calculations, therefore we set p0 ¼ 2
every time. This initial condition corresponds to c ¼ ffiffiffi

5
p

.
For bichromatic Gaussian pulses we found that the application

of the second harmonic is only reasonable at short pulse durations,
namely in the 5 fs–15 fs range. We analyzed the energy of the
electron as a function of time during the interaction with the beam
and found that at usual pulse durations, e.g. 35 fs–40 fs or above,
the second harmonic only causes a small, oscillatory perturbation
in the energy–time function.

However, at short pulse lengths, we found considerable
additional gains due to the presence of the second harmonic. As
expected, the energy gain depends very sensitively on the
carrier–envelope phase. For some values of u1, the net energy gain
can be even negative (see Fig. 5).

The energy gain depends very weakly on the chirp parameter of
the second harmonic, as presented on Fig. 6, the dominant param-
eter—along with the initial momentum, carrier–envelope phase
and beam waist—is the chirp parameter of the main harmonic.

As mentioned above, we found that the application of the
second harmonic may result in a considerable additional energy
gain. The enhancement may be 20%, greater than conjectured,
but it may reach even 30% (see Fig. 7). This promising result
suggests that bichromatic laser pulses could be efficiently used
for laser and laser–plasma based electron acceleration.
4. Summary

An effective theory for describing laser–plasma based electron
acceleration has been presented. Earlier we showed that the back-
ground effects of the plasma can be incorporated into its refraction
index. This way, the laser-driven plasma based acceleration can be
well approximated with the pure laser-based acceleration, and the
basic phenomena can be studied in a numerically and theoretically
simple manner. In the present paper we investigated the accelera-
tion mechanisms driven by bichromatic laser fields. We found that
by properly chosen parameters the energy gain can be enhanced by
4% for plane wave pulses and even 30% for Gaussian pulses, com-
pared to the monochromatic case. These are promising results that
confirm that it is useful to apply bichromatic driver pulses for laser
and laser–plasma based acceleration. It would be interesting to
perform the same calculations with such Gaussian pulse shapes
that are exact solutions of Maxwell’s equations and compare them
with our most recent results. P. Varga and P. Török derived such
solutions and found that at wide focusing—that is, if the beam
diameter is greater than ten times the laser wavelength—the
paraxial approximation provides satisfactory results, however, at
tight focusing, the differences are significant [18].
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