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Abstract. We present a coupled-channel calculation of two-photon single ion-
ization of helium by a superposition of the 7th to the 13th harmonic of a
Ti:sapphire laser. Solving the time-dependent two-electron Schrödinger equa-
tion with a coherent polychromatic field, the single-ionization probabilities are
calculated. Besides Slater-like orbitals we use regular Coulomb wavepackets in
our configurational interaction basis to describe the single- and double-electron
continuum. Linearly polarized laser pulses are used in the length gauge within
the dipole approximation. We applied cosines squared normalized envelope
functions. The pulse intensity is varied between 109 and 1012 W/cm2, the to-
tal duration of each harmonics is between 36–49 femtoseconds. Our results are
compared to other ab initio calculations, the possible reasons of the discrepan-
cies are discussed.
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1. Introduction

Multi-photon ionization of atoms induced by short-pulse coherent extreme ultravio-
let (XUV) radiations is a challenging problem for a long time now. Recent advances
in the high-order harmonic generation (HHG) techniques have led to the develop-
ment of soft X-ray sources that feature ultrashort pulses with pulse durations of a
few hundred attoseconds (as) and may reach intensities (∼1014 W/cm2) that are
capable of inducing multi-photon processes [1]. Papadogiannis et al. [2] reported the
observation of two-photon single ionization of He by a broad band XUV pulse with
a spectrum consisting of the 7th harmonic to the 13th harmonic of a Ti:sapphire
laser. In our study we analyze this process with our coupled-channel method which
will be outlined later.
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Multi-photon, in particular two-photon, ionization of helium by XUV pulses
has been studied theoretically by different groups. A considerable numerical effort
has been made to solve the two-active electron time-dependent Schrödinger equa-
tion (TDSE) with various methods. The configuration interaction B-spline spectral
method is one powerful tool [3]. The products of two B-splines represent the ra-
dial part of the wavefunction which allows the inclusion of the electron-electron
interaction to a high degree of accuracy. Various time-dependent configuration
interaction approaches have been used for the interaction with ultra short laser
pulses [4, 5], where in [4] time-dependent restricted Hartree–Fock calculations were
also presented. A mixed finite-difference basis set technique was employed in [6] to
calculate the double-ionization probabilities for short intense pulses. Further details
including references and an overview over various methods are given in the review
by Lambropoulos et al. [7].

In this paper, we theoretically investigate two-photon ionization of helium by ul-
trashort femtosecond pulses by solving the TDSE with our coupled channel method
which has been originally developed for heavy-ion helium collisions [8–10] and later
implemented to describe laser-driven atomic processes and two-photon coherent con-
trol [11–13]. To represent bound states and resonances we use Slater-type orbitals.
A special feature in our explicitly correlated basis are regular Coulomb wavepackets
which we use to discretize the continua. Atomic units are used otherwise mentioned.

2. Theory

The details of our coupled-channel method is introduced in previous works [11, 13]
and here we give only a brief summary. To describe the ionization process in the
laser pulse we solve the time-dependent Schrödinger equation

i
∂

∂t
Ψ(r1, r2, t) =

(

ĤHe + V̂ (t)
)

Ψ(r1, r2, t) , (1)

where ĤHe is the Hamiltonian of the unperturbed helium atom
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V̂ (t) is the interaction operator between the laser pulse and the atomic electrons
and will be specified later.

To solve (1) we expand Ψ(r1, r2, t) in the basis {Φi} of eigenfunctions of the
time independent Schrödinger equation

ĤHeΦj = EjΦj , (3)

to yield

Ψ(r1, r2, t) =

N
∑

j=1

aj(t)Φj(r1, r2)e
−iEjt , (4)
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where the aj(t) are the time-dependent expansion coefficients and Ej are the eigen-
values in (3). Inserting (4) into the time-dependent Schrödinger equation (1) leads
to a system of first-order differential equations for the expansion coefficients

dak(t)

dt
= −i

N
∑

j=1

V (t)kje
i(Ek−Ej)taj(t) (k = 1, . . . , N) (5)

with the coupling matrix elements

V (t)kj = 〈Φk|V̂ (t)|Φj〉 . (6)

Denoting the ground state with channel j = 1 the initial condition before the laser
pulse is applied reads

aj(t → −∞) = 1 if j = 1 ,

aj(t → −∞) = 0 if j 6= 1 . (7)

The probabilities for transitions into final helium states j after the pulse are simply
given by

Pj = |aj(t → +∞)| . (8)

For the total ionization probability one must sum the Pj which correspond to the
discretized channels formed by the wavepackets.

The two-photon single ionization yield is defined via the following expression
W2 = σ̂2I

2
0 , where I0 is the peak intensity of the laser pulse and σ̂ is the generalized

cross section [7]
σ̂2 = (αω)2kP (9)

with α being the fine-structure constant, ω the angular frequency of the laser pulse,
k the wavenumber of the ionized electron and P the ionization probability.

The eigenfunctions Φj in (3) are obtained by diagonalizing the Hamiltonian in
a basis of orthogonal symmetrized two-particle functions fµ so that

Φj(r1, r2) =
∑

µ

b[j]
µ fµ(r1, r2) . (10)

In the following we restrict ourselves to singlet helium states only. For the single-
particle wave functions we use an angular momentum representation with spherical
harmonics Yl,m, hydrogen-like radial Slater functions and radial regular Coulomb
wavepackets. The Slater function reads

Sn,l,m,κ(r) = c(n, κ)rn−1e−κrYl,m(θ, ϕ) , (11)

where c(n, κ) is the normalization constant. A regular Coulomb wavepacket

Ck,l,m,Z(r) = q(k,∆E)Yl,m(θ, ϕ)

Ek+∆Ek/2
∫

Ek−∆Ek/2

Fk,l,Z(r) dk , (12)
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with normalization constant q(k,∆E) is constructed from radial Coulomb function
of the well-known form

Fk,l,Z(r) =

√

2k

π
eπη/2 (2ρ)l

(2l + 1)!
e−iρ|Γ(l + 1 − iη)| 1F1(1 + l + iη, 2l + 2, 2iρ) , (13)

where η = Z/k, ρ = kr.
The wavepackets cover a small energy interval ∆Ek and thereby form a discrete

representation of the continuum which can be incorporated into our finite basis set.
The normalized Coulomb wavepackets are calculated up to 315 a.u. radial distance
or more to achieve a deviation of less than one percent from unity in their norm.
With the help of the Coulomb wavepackets we can make calculations for quiver
radii (rq =

√
I/ω) of more than 50 a.u. (I stands for the pulse intensity and ω for

the photon energy). This would be hardly possible with bound wave functions only.
In our approach two different effective charges Z have been used to take into

account the difference between the singly and the doubly ionized electrons. For
singly ionized states we have used Z = 1.0 and Z = 2.0 for the doubly ionized case.
A slight deviation from the effective charge gives practically no change in the final
spectrum.

Out of the single-particle states (5) we have used 17 s functions (9 Slater func-
tions (sf), 4 wavepackets (wp) with Z = 1.0 and 4 wp with Z = 2.0), 18 p functions
(6 sf, 6 wp with Z = 1.0 and 6 wp with Z = 2.0) and 12 d functions (4 sf, 4 wp
with Z = 1.0 and 4 wp Z = 2.0) to construct the symmetrized basis functions
fLM

µ (r1, r2). For the L = 0 configurations we have used ss+pp+dd angular corre-
lated wave functions to get a ground state energy of −2.901 a.u. which is reasonably
accurate compared to the “exact” value of −2.903 a.u. For the L = 1, 2 states we
have used only sp or sd configurations. A more detailed analysis of our applied
basis can be found in [11,13].

We restrict ourselves to linearly polarized laser pulses whose coupling to the
atomic electrons we describe in the length gauge and in dipole approximation,

V̂ (t) = −
∑

i=1,2

E(t) · ri. (14)

The laser pulse we use is polarized along the z-axis and has the form of

E(t) =
∑

N=7,9,11,13

EN

(

cos
π · t
τN

)2

[sin(Nω0t)] ez , (15)

where EN s are the following relative amplitude ratios of the harmonics
√

0.4 : 1 :√
0.4 :

√
0.08 according to the experiment of [2]. The total duration at FWHM of

each of the harmonics has been assumed to follow the rule of τN = 130/
√

N . The
phase shifts between different harmonics are set to zero.
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3. Results and Discussion

The coupled-channel equations (5) are solved numerically by using a Runge–Kutta–
Fehlberg method of order five, embedding a fourth-order automatic time step regu-
lation algorithm. The results of our theoretical investigation are depicted in Fig. 1
together with the calculations of Papadogiannis et al. [2]. The figure shows the
yields of the two-photon single ionization of He by each of the individual harmonics
(9th, 11th, 13th and 15th) as a function of its intensity (points) and by the super-
position of the harmonics used in the experiment as a function of the total XUV
intensity (lines). The original [2] paper consists of many more calculated points for
the individual harmonics than listed above. For a better transparency, (or to avoid
overlap) we took different pulse intensities in our calculations than [2].
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Fig. 1. Calculated yields of He+ ions as a function of the intensity of the laser
filed. The thick solid line represents our results and the thin dashed line is from
the work of [2] for the superposition of the 7th, 9th, 11th and 13th harmonic
generation. The hollow symbols are data of [2], full symbols represent our calcu-
lations. Triangle down: 9th, triangle up: 11th, diamond: 13th and circle: 15th
higher harmonic

A careful analysis of [2] data shows that for low pulse intensities 109 W/cm2

the 11th harmonics gives the highest ionization rates, however for moderate inten-
sities (1012 W/cm2) the ionization of the 9th harmonics becomes the highest. It is
worth to mention that for individual harmonics the ratio between the largest and
the smallest ionization yield is less than a factor of 3. This is a clear fingerprint
of a “dense-enough-approximated” electron continuum. Our results compared to
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[2] are about a factor of 3 or 5 higher in the whole intensity range for the discrete
harmonics. We interpret this phenomena with the intrinsic property of our config-
uration interaction (CI) basis. It is clear that our full-flagged CI wavefunction de-
scribing single-ionized two-electron states contain contributions from bound–bound
Slater–Slater orbitals which can not be neglected. Our experience show that there
are always some spurious states exist in the single-electron continuum which have
larger ionization probabilities than other. These are the ionization states which
are overwhelmingly approximated with bound state orbitals rather than Coulomb
wavepackets. It is also clear to see that at some intensities the ionization yields of
the 9th and 11th harmonics are a factor of 2 or more higher than the corresponding
yields of the 13th and 15th. Our explanation is the following, due to linear depen-
dence the size of our basis has a more or less upper limit, and the coverage of the
continuum cannot be as dense as for B-splines. This statement is also true for the
superposition of the 7th, 9th, 11th and 13th higher harmonics of the Ti:sapphire
laser, where our calculation (thick solid line) is about a factor of 4 larger than the
data of [2] (thin dashed line).

We should mention that according to the non-perturbative property of our
coupled-channel method a large number of different two-photon ionization paths
are included for all the four harmonic components. At the level of the coupling
matrix (6) the different spectral components of the harmonic fields act indepen-
dently building up the transition probabilities. However, the time propagation of
the coupled-channel equations (5) with N different transition channels describes
the complete set of quantum interferences from N different quantum states to the
same N quantum states (even for a single harmonics). So quantum interference
effects are fully includes in the given basis set. In contrast to perturbative meth-
ods the different spectral components can not act independently from each other.
With some additional restrictions (e.g. considering that only the first column of
the coupling-matrix being non-zero gives back a first order perturbation series) the
quantum interference effects can be reduced.

4. Conclusions

We presented results from ab initio coupled-channel calculation for two-photon sin-
gle ionization of helium by a superposition of the 7th to the 13th harmonic of a
Ti:sapphire laser. Linearly polarized laser pulses were used in the length gauge
within the dipole approximation. The channel functions were built up from Slater-
like orbitals and regular Coulomb wavepackets which helped us to have better phys-
ical representation of the single- and double-electron continuum. We applied cosines
squared normalized envelope functions. The pulse intensity was varied between 109

and 1012 W/cm2, the total duration of each harmonics was between 36–49 fem-
toseconds. Our results were compared to other ab initio basis calculations, and
some discrepancies were found. The possible reasons were discussed. The possible
quantum interference effects were analyzed as well.
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